Appendix

CUHK awarded projects in the 15th International Invention Fair in the Middle East

	Awards	Principal investigator	Project title	Project description
		and team members		J
		(department)		
1	Gold Medal with the	Professor Li Zheng,	System and Method for	Gastrointestinal (GI) cancer is one of the cancers with the
	Congratulations of	Professor Philip Chiu	Endoluminal Tissue	highest incidence and mortality worldwide. Endoscopic
	the Jury and WIPO	Wai-yan, Dr Yip Hon-	Manipulation	submucosal dissection (ESD) is an advanced endoscopic
	National Award for	chi, Mr Chan Wai-shing		surgery used for the non-invasive treatment of early GI
	Inventors	and Mr Sun Yichong		cancers, allowing for organs to be preserved and improving
		(Department of Surgery)		cure rates. In current ESD procedures, surgeons use a single
				instrument through a flexible endoscope to perform tissue
				dissection. The instrument moves along with the
				endoscope's view, resulting in technical complications and
				a long learning curve. This invention proposes a novel
				endoscopic magnetic countertraction system and method
				that can achieve dynamic tissue traction within the
				gastrointestinal tract. Compared to conventional ESD, this
				system provides surgeons with a "second hand" during
				surgery, which enables more flexible manipulation during
				ESD procedures, reducing surgical difficulty, shortening
				surgery time and enhancing surgical safety.
2	Gold Medal with the	Professor Siew Ng,	A Novel Synbiotic	The novel synbiotic formula SCM06 is an effective
	Congratulations of	Professor Francis KL	Formula (SCM06):	microbiome-based solution to enhance the mental and
	the Jury and Special	Chan, Dr Oscar Wong	Modulating Gut	digestive health of children. SCM06 was scientifically
	Prize Awarded by	Wing-ho and Dr	Microbiome to Alleviate	formulated based on faecal metagenomics and clinical data
	UNESCO	Raphaela Iris Lau	Sensory Hypersensitivity	from CUHK. A pilot study in Hong Kong showed that
		(Department of	and Anxiety in	SCM06 could significantly alleviate symptoms of anxiety,
		Medicine and	Children with Autism	sensory hypersensitivity and functional abdominal pain in
		Therapeutics)	Spectrum Disorder	children with autism spectrum disorder (ASD).
			(ASD)	

3	Gold Medal with the Congratulations of the Jury	Professor Choy Kwong- wai, Professor Dong Zirui, Professor Cao Ye, Professor Matthew Chau Hoi-kin and Mr Yang Zhenjun (Department of Obstetrics and Gynaecology)	Methods for Detecting Absence of Heterozygosity by Low- Pass Genome Sequencing	This invention is an advanced bioinformatics analytical method to detect absence of heterozygosity (AOH) in next-generation sequencing (NGS) data. The method can be applied in molecular genetic diagnostics and genomics research. AOH is an important marker of imprinting diseases caused by uniparental disomy. It can also inform autozygosity through identity by descent, which is more prevalent in certain regions of the Middle East, with implications regarding increased propensity to autosomal recessive disorders. This method uses low-read-depth NGS data to save cost and shortens analytical time. This pipeline empowers NGS-based cytogenomics analysis as an alternative approach to chromosomal microarray analysis. Independent on the NGS platform, it is applicable for reanalysis of existing NGS datasets. It has been adopted by the Hong Kong Hospital Authority as a clinical genetic diagnostic service.
4	Gold Medal with the Congratulations of the Jury	Professor Chen Benmei and Professor Chen Xi (Department of Mechanical and Automation Engineering)	Unmanned Systems and AI Empowered High Performance Urban Environment Digitization and Management	This invention shows the pathway of Unmanned Aerial System (UAS) applications in the smart built environment with a focus on AI-based, fully autonomous data collection, 3D reconstruction, target of interest evaluation and systematic management of as-built information with BIM/GIS based digital-twin platforms. There are two aspects to its core technology: 1) Development of a software framework for single/multi-drone applications covering task management, motion planning, dynamic control, environment perception, visualisation and interaction with users. 2) Integration of UAS, AI and digital platforms for urban environment inspection, monitoring and management. The invention can not only enhance built asset management

	T		T	
				efficiency and accuracy but also reduce labour costs and
				safety hazards during multi-scale indoor and outdoor
_	G 1117 1 1		7	environment inspection and monitoring.
5	Gold Medal	Professor Qin Ling,	Bioactive Hydrogel,	In recent years, there has been vigorous development of
		Professor Xu Jiankun	Preparation Method and	polymer hydrogels due to their unique properties, such as
		and Mr Xu Shunxiang	Application Thereof	low modulus, high water content and excellent
		(Department of		biocompatibility, as well as the ability to flexibly design and
		Orthopaedics and		control their chemical structure, mechanical properties,
		Traumatology)		bioactivity, processability and more. They have been
				extensively researched, especially in tissue engineering,
				drug delivery and encapsulation, and wearable sensors.
				Organic-inorganic composite hydrogels exhibit unique
				advantages in improving mechanical and biological
				properties. However, further exploration is needed to expand
				the range of inorganic active components in composite
				hydrogel systems, increase the content of inorganic active
				components to broaden the application scenarios and
				effectiveness of materials and meet clinical translation
				requirements. Leveraging the advantages of flexible design
				and control of hydrogels to develop a series of bioactive
				composite hydrogels with controllable gelation time,
				adjustable physical properties from flexible to rigid and
				autonomously designed biological properties is crucial.
				These hydrogels are expected to be applied in different
				tissue regeneration and repair pathological models,
				particularly in the regenerative repair of infectious tissues,
				with significant clinical value and social significance. This
				invention relates to the field of medical biomaterial
				technology, involving a kind of bioactive composite
				hydrogel. It provides a method for preparing such hydrogels
				using polyethylene glycol reactive ester, amino compounds
		1		and inorganic bioactive ingredients as reaction raw

				materials. It also shows how these hydrogels can be used for drug delivery and tissue repair and regeneration.
6	Gold Medal	Professor Ngai To, Dr Chong Hio-lam and Mr Yuen Chun-bong (Department of Chemistry)	EcoShield: Bacterial Cellulose for a Sustainable Future	Introducing Ecoshield, a ground-breaking Bacterial Cellulose (BC) packaging that sets a new standard for sustainability, far surpassing single-use plastics and leather. It uses rapidly growing bacteria to produce exceptionally strong cellulose from tea and sucrose in just two weeks. This innovative material exhibits outstanding mechanical and barrier properties, effectively safeguarding contents from moisture, oxygen and UV radiation without the use of toxic solvents. Shapeable and available in a range of colours, its transparent and durable composition closely mimics glass and plastic. Ecoshield biodegrades completely in soil within five months, dramatically reducing environmental impact. By addressing the increasing demand for sustainable packaging solutions, Ecoshield provides businesses with a competitive marketing edge and appeals to environmentally conscious consumers.